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Can a difference in molecular weights cause an eruption
in a driven flow of self-organizing immiscible system?
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Abstract. Driven flow of a non-equilibrium non-conservative (NENC) system with a mixture of immis-
cible particles (A, B of molecular weight MA, MB) exhibits self-organizing patterns (segregation, phase-
separation, etc.) in steady-state. The flow response (v) of mass flux density (j) to bias (H), v = ∂j/∂H
in steady-state is found to be sensitive to molecular weight ratio (α = MB/MA). While the flux density
(j) responds linearly to bias for both components (A, B) at α = 1, onset of eruptive response occurs at
extreme bias (H → 1) at α > 1 where v → ∞ for heavier (B) and v → −∞ for lighter (A) constituents.
Difference in molecular weights (MA, MB) is not only critical to eruptive flow but also in controlling the
flow response prior to this crossover.

PACS. 61.43.Bn Structural modeling: serial-addition models, computer simulation – 83.10.Rs Computer
simulation of molecular and particle dynamics

Understanding the morphological evolution, transport,
and flow [1–23] of particle systems have attracted enor-
mous attention recently due to their response to external
bias particularly in granular systems [1–18]. Systems mod-
eled by coarse-grained particles have diverse variations in
spatial and temporal scales, i.e., nano-scale materials in
laboratory to large scale applications such as flow of wa-
ter and sand mixtures, dissociation of methane and hydro-
carbon below the ocean floor [24–28], and mud volcanoes.
One would expect interesting responsive phenomena in the
flow of dissimilar constituents [29–31] which are not gener-
ally captured by traditional hydrodynamic methods. Com-
puter simulations with particles are very useful in under-
standing the evolution of global patterns from microscopic
details. A range of computational methods are employed
in such studies including lattice gas [19,20], molecular dy-
namics [18,21,22], and Monte Carlo [23] methods. Number
of particles (constituents) is conserved in computational
modeling of most granular systems which is applicable to
a range of systems [1–18] in equilibrium. In many driven
systems including formation and dissociation of methane
hydrate and mud volcanoes, the number of particles is not
conserved. Non-equilibrium steady-state systems [32,33]
with non-conserved constituents exhibit interesting flow
response and structural patterns [29–31].
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Flow properties of particulate systems are frequently
studied by a number of lattice gas methods [34–36]. It
is, however, easier to incorporate interactions between
constituent particles and effective medium (empty lattice
sites, see below) in interacting lattice gas [32,33] than
that with the widely used Boltzmann lattice gas [34,35]
in studying the flow. Using an interacting lattice gas
model [29–31], we study the flow response of an immis-
cible mixture with dissimilar components A and B driven
by a pressure bias (H) against sedimentation. For a spe-
cific molecular weight ratio, we have recently observed [31]
an eruptive flow response at the extreme value of the bias.
It is not clear how such a quantity as the difference in
molecular weight ratio affect the response. In this article
we show that the difference in molecular weights of dis-
similar constituents is not only key to eruptive response
but also in orchestrating the flow response prior to its di-
vergence at the extreme bias.

We consider a mixture of two components A and B
(each with molecular weight MA and MB) on a cubic lat-
tice of size L3 with L = 30–200. Almost all data presented
here are generated on 1003 sample. Different sample sizes
are, however, used to check for the finite size effects. No se-
vere finite size effect is observed on the qualitative behav-
ior unless specified otherwise. The molecular weight ratio
α = MB/MA is varied with MA = 0.1 and α = 1 − 10.
Particles A and B are randomly distributed initially at
about 50% of the lattice sites with one particle at a site.
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A nearest neighbor interaction between particles (A, B)
and empty (pore) sites (O) is described by the energy,

Ei =
∑

k

∑

n

J(k, n) (1)

where index k runs over all sites occupied by particles
and n over all nearest neighbor sites of k. The interaction
matrix elements,

J(A, A) = J(B, B) = −J(A, B) = −J(B, A) = −ε;
J(A, O) = J(B, O) = −1. (2)

The interaction strength or miscibility gap ε = 1. Molecu-
lar weights of constituents affect their sedimentation. The
gravitational potential energy Eg of a particle at height z
(in unit of g, the acceleration due to gravity) is given by

Eg = MA/B z. (3)

The sedimentation probability is coupled with the change
in gravitational potential energy via the Boltzmann dis-
tribution (see below).

A source of particles is connected to the bottom plane
(z = 1). This causes a concentration gradient (see below)
which exerts a driving force upward. Additionally, the
hydrostatic pressure bias (H) pushes fluid constituents
upward (+z direction) against the gravitational sedimen-
tation downward (−z direction). The bias is implemented
in selecting one of the nearest neighbor sites along
±x,±y,±z directions with probabilities,

Px = P−x = Py = P−y =
1
6
;

Pz =
1 + H

6
, P−z =

1 − H

6
; 0 ≤ H ≤ 1. (4)

Attempts are made to move each randomly selected parti-
cle (A and B) to their nearest neighbor sites chosen with
the bias probability H with the Metropolis algorithm. Fol-
lowing procedure is used to implement the algorithm. A
particle is selected randomly say at site i and one of its
nearest neighbor site j is selected with the bias probabil-
ity H . If the site j is already occupied by another particle,
then the attempt to move the particle fails. If the site j is
empty, then the particle is moved (from the site i to site j)
with the Boltzmann probability e−∆E/τ where ∆E is the
change in energy E = Ei + Eg due to move and τ is the
temperature in unit of Boltzmann constant and energy;
τ = 1 is used in this study. When a particle at the bottom
plane (z = 1) moves horizontally (xy-plane) or upward (to
z = 2 plane), a new particle (A or B) from the source is
released into the vacated site according to its current lat-
tice concentration as described before [29–31]. The cubic
box is open along vertical boundaries, i.e., a particle can
drop out when it attempts to move down from the bot-
tom or escape from the top (z = L). Periodic boundary
conditions are implemented along the transverse (x, y) di-
rections. An attempt to move each particle once defines
unit Monte Carlo step (MCS) time.

The number and densities of particles and their dis-
tributions change as the simulation proceeds. Release of

particles from the source at the bottom leads to a net flow
along the longitudinal (z) direction. The competing driv-
ing fields due to pressure bias and gravity further affect
the flow and pattern. A steady-state is reached with a sta-
ble density profile and a constant rate of mass flux in the
asymptotic time limit. The simulation is repeated for a
number of independent samples to obtain a reliable esti-
mate of physical quantities. These quantities include, root
mean square (rms) displacement of tracers (particles) and
that of their center of mass, density profiles (longitudinal
and transverse), correlation profiles (i.e., average number
of different neighbors of each particles), flow rate and flux
rate density, etc. as a function of the bias H for differ-
ent values of molecular weight ratios α. We have already
studied the structural response, i.e., density profiles of A
and B and their steady-state concentrations [29]. In this
article, we constrain to flux response.

Figure 1 shows a typical snap-shot of particles. It is
clear to see segregation and phase separation with dense
phase toward the lower part and low density toward the
top. As mentioned above, the number of constituents is
not conserved. Therefore, both the number of particles
and density profiles evolve with the time step as shown in
Figure 2 for a molecular weight ratio α = 10 at high values
of bias H = 0.7–1.0. Initially the total number (NA) of A
particles in the lattice decreases while the number (NB) of
B particles increases with the time steps. Both NA and NB

attain almost constant values in steady-state equilibrium
with NB > NA.

The equilibrium values of NA and NB depend non-
monotonically on the pressure bias [29]. The steady-state
density (of B are larger than that of A) profiles show
non-linear including sigmoidal variation (see below) along
the longitudinal direction (from bottom to top). The driv-
ing force due to concentration gradient is thus non-linear
along the longitudinal direction as pointed out before [29].
A self-organizing morphology with a stable structural pat-
tern is however achieved at each bias and molecular weight
ratio even though there is a constant mobility of parti-
cles from bottom to top. At high pressure bias and large
molecular weight ratio (α = 10), the density profile is over-
whelmingly dominated by the heavier (B) particles with
a relatively uniform distribution along the transverse di-
rection (Fig. 2).

The transverse density profiles provide insight into
the complementary structural patterns. For example, the
spatial complementary oscillation in transverse density
profiles of A and B reveals a phase separation or de-
segregation [29] at low bias H = 0.1 (Fig. 3). Segrega-
tion (Fig. 3) reduces considerably on increasing the bias
and almost vanishes at high values of the bias (Fig. 2)
where the driving bias dominates over the interaction en-
ergy (E = Ei + Eg). The difference in density (higher
with higher molecular weight) is however increases with
the bias. In general, increasing the pressure bias reduces
the non-linearity [29] in the longitudinal density profiles
and smears out the contrast (amplitude of oscillations) in
phase separation seen from the transverse density profiles
(Fig. 3). These structural patterns affect the flow (follows).
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Fig. 1. Immiscible A (light, MA = 0.1) and B (dark, MB = 0.3) particles with pressure bias H = 0.4 at time steps t = 1000
on a 253 lattice with ε = 1.
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Fig. 2. Left: number of particles (NA, NB) versus time steps at bias H = 0.7–1.0 with their molecular weights MA = 0.1
and MB = 1.0. A (open, black) and B (filled) symbols. Right: longitudinal (z) and transverse (y) (inset) density profiles in
steady-state. Sample size 1003 with 128 independent runs.
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Fig. 3. Density profile of A
(open) and B (filled) at bias
H = 0.1 for their molecu-
lar weights MA = 0.1 and
MB = 0.1− 0.4. Left: longitu-
dinal (z) and right: transverse
(y) density profiles in steady-
state. Sample size 1003 with
128 independent runs.
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Fig. 4. Net mass transfer along longitudinal direction
of A and B (top inset) and corresponding flux density
(j) versus time steps at bias H = 1.0 for MA = 0.1 and
MB = 0.1, 0.3, 0.4, 0.8, 1.0. As many as 128 independent
samples are used on 1003 lattice.

Obviously, there is a net flow of A and B from bottom
to top. Evolution of the mass flux with the time step is
presented in Figure 4. The mass transfer Q of each compo-
nent increases linearly with the time steps in the asymp-
totic long time regime which indicates that the system
has reached a steady-state. Corresponding current (flux)
density j can be evaluated from

j =
1

Lx × Ly

dQ

dt
. (5)

Evolution of j shows how it reaches a constant value for
each molecular weight ratio. The constant value of the flux
density implies that the dynamic system has reached the
steady-state which is also consistent with a stable mor-
phology. Thus, both structure and flow become stable in
the asymptotic time regime. It is important to point out
that the unit of time is arbitrary similar to energy and
molecular weight which is a common practice in such a
coarse-grained modeling with phenomenological interac-
tions. However, the time step appears to scale linearly
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Fig. 5. Steady-state flux density (j) of A and B
versus bias H for MA = 0.1 and MB = 0.1–1.0. As
many as 128 independent samples are used on 1003

lattice.

with a realistic time frame born out by the linear mass
flow expected from the solution of a simple driven dif-
fusive system [37]. Our goal is to understand trends in
the flow response with respect to variations in parameters
such as pressure bias and molecular weight.

How does the steady-state flux density (jA/B) re-
spond to pressure bias for mixtures of different molec-
ular weight ratios? Figure 5 shows the variation of the
flux density with the pressure bias for various mixtures,
α = MB/MA = 1–10. For a symmetric molecular weight
ratio (α = 1), we see a linear response throughout the
pressure bias regime. On increasing the molecular weight
ratio, the flux density response of A and B begin to dif-
fer. At low bias the flux density response of both com-
ponent is linear (which is better seen in the normal plot,
the inset figure than on the log-log plot). At large values
of bias, the response becomes non-linear. The response of
higher molecular weight (MB = 0.2–1.0) component di-
verges while that of lower weight component (A) declines
dramatically at extreme values of the bias. Let us define
a volatility index,

v = ∂j/∂H. (6)

We see that v → ∞ for B and v → −∞ for A as H → 1.
What happens when a difference in the molecular

weight of particles A and B sets in that causes an erup-
tive flow response of the heavier (B) component? We have
already seen such an eruptive response for a fixed value of
α = 3 [31]. The variation of the molecular weight ratio (α)
as presented here, however, shows that (i) the difference
in molecular weight is the root cause of eruptive response
(which vanishes for α = 1), (ii) approach to eruptive flow
differ considerably with the difference in molecular weight

of the constituents – larger the difference, the faster is the
response (v) of the heavier component prior to eruption,
and (iii) the nature of eruption remains independent of
the molecular weight ratio (α > 1) as H → 1. Asym-
metry in the molecular weights of the constituents seems
to introduce correlation between the source and the dy-
namic lattice system. Particularly, the correlation among
particles with the higher molecular weight increases on in-
creasing the bias leading to eruption in their flow while an
opposite trend occurs concurrently in flow of the compo-
nent with the lower molecular weight.
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